more..
01. Neural Network Definition
(신경망의 정의)
신경망은 패턴을 인식하도록 디자인된 사람의 뇌를 본떠 느슨하게 모델링된 일련의 알고리즘이다. 신경망은 기계 인식, 원시 입력값을 라벨링하거나 클러스터링하는 것을 통해 감각 데이터를 해석한다. 신경망이 인식한 패턴들은 모든 실제 세상의 데이터-이미지, 사운드, 텍스트, 시간 계열-가 번역되어 벡터에 포함된 수치들이다.
신경망은 클러스터링하고 분류하는데 도움을 준다. 신경망은 저장하고 관리하는 데이터 위에서 클러스터링하고 분류하는 계층으로 생각할 수 있다. 신경망은 예제로 입력하는 값들 사이의 유사성에 따라 라벨이 붙어 있지 않은 데이터를 그룹하는데 도움을 준다. 그리고, 라벨이 붙여진 데이터를 가지고 있다면 분류하여 훈련할 수 있다. (더 정확하게 이야기하면, 신경망은 클러스터링하고 분류하기 위해 다른 알고리즘에 있는 기능들을 추출한다. 따라서 심층 신경망(Deep Neural Networks)은 강화 학습, 분류 및 회귀 알고리즘을 포함한 더 커다란 머신러닝 어플리케이션의 컴포넌트로 생각할 수 있다.)
Deep Learning(심화 학습)으로 풀 수 있는 문제들은 무엇이 있으며, 더 중요한 것은 Deep Learning으로 여러분의 어떤 문제들을 해결할 수 있는가? 그에 대한 답을 알기 위해서는 스스로에게 몇 가지 질문을 해볼 필요가 있다. 내가 관심을 가지고 있는 결과는 무엇인가? 그런 결과들은 데이터로 적용될 수 있는 라벨들이다. 예를 들면, 이메일 필터의 스팸인지 아닌지, 사기 탐지의 좋은 사람인지 나쁜 사람인지, 고객 관계 관리(CRM)상에서의 화난 고객인지, 행복한 고객인지. 그런 다음 물어보라. 이 라벨에 동반되는 데이터를 가지고 있는가? 곧, 라벨이 붙여진 데이터를 찾을 수 있는가? 또는 라벨과 입력값 사이의 상관 관계를 알고리즘에 가르쳐 주기 위해 스팸이라는 라벨이 붙여진 스팸과 같이 라벨이 붙여진 데이터들(Mechanical Turk이나 Crowdflower와 같은 서비스를 사용하여)을 만들 수 있는가?
댓글을 달아 주세요
댓글 RSS 주소 : http://www.yongbi.net/rss/comment/786