(Data Lakes 비즈니스 사례)
EDW는 많은 조직에서 복잡한 분석, 보고, 운영을 수행하기 위한 주요 메커니즘이었습니다. 하지만, EDW는 거대한 데이터 볼륨과 광범위한 데이터의 다양성이 표준이 되는 빅데이터 시대에 너무 까다로워서 작업하기 어렵습니다. EDW의 데이터 모델을 변경하는 것은 어려운 일이고, 필드간 통합 매핑은 경직되어 있습니다. 또한, EDW는 비쌉니다.
아마도 더 중요한 것은, 대부분의 EDW가 데이터를 다루고, 강화하기 위해서 비즈니스 사용자들이 IT에 의존하는 것을 크게 요구한다는 것입니다. 왜냐하면 유연하지 못한 설계, 복잡한 시스템, EDW상의 Human Error에 대해 용납이 되지 않는 환경이기 때문입니다.
Data Lake는 이러한 모든 문제들을 해결합니다. 결과적으로 거의 모든 산업에서 잠재적인 data lake 사용 사례를 가지고 있습니다. 예를 들면, 조직은 더 나은 데이터 가시성을 얻기 위해서, 데이터의 Silo를 제거하고, 고객에 대한 360도 뷰를 포착하기 위해 data lake를 사용할 수 있습니다. 끝으로, data lake를 통해서 조직은 산업 전반에 걸쳐 빅데이터의 잠재력을 발휘할 수 있습니다.
Freedom from the rigidity of a single data model
(단일 데이터 모델의 엄격함으로부터의 자유함)
데이터는 구조적인 경우 뿐만 아니라, 비 구조적일 수도 있기 때문에 블로그 포스팅부터 상품 리뷰까지 모든 것을 저장할 수 있습니다. 또한, data lake에 저장된 데이터는 일관성을 유지할 필요가 없습니다. 예를 들면, 데이터를 제공하는 사람에 따라서 동일한 유형의 정보를 굉장히 다른 데이터 형태로 받을 수 있습니다. 이것은 EDW에서는 문제가 될 수 있습니다. 그러나 data lake에서는 서로 다른 데이터 셋트 사이의 통합 포인트 정의에 대한 스키마 걱정 없이 모든 종류의 데이터를 하나의 저장소에 넣을 수 있습니다.
Ability to handle streaming data
(스트리밍 데이터 처리 능력)
오늘날 데이터 세계는 스트리밍 세계입니다. 스트리밍은 IoT의 센서 데이터나 주식 시장 데이터와 같은 드문 경우에서부터 소셜 미디어의 매우 일상적인 데이터까지 발전해 왔습니다.
Fitting the task to the tool
(작업을 도구에 맞추는 것)
EDW에 데이터를 저장할 때, 특정 종류의 분석 업무를 잘 수행할 수 있습니다. 그러나 Spark, MapReduce나 다른 새로운 모델을 사용하는 경우에는 EDW에서 분석할 데이터를 준비하는 것이 실제 분석을 수행하는 것보다 더 많은 시간이 걸릴 수 있습니다. Data lake에서는 과도한 사전 작업 없이 이러한 새로운 패러다임 도구들을 사용하여 데이터를 효율적으로 처리할 수 있습니다. Data lake가 엄격한 메타데이터 스키마를 적용하지 않기 때문에 더 적은 단계로 데이터를 통합할 수 있습니다. 사용자는 Schema-on-read를 통해 쿼리 실행 시에 수행되는 쿼리에 사용자 지정 스키마를 적용할 수 있습니다.
Easier accessibility
(더 손쉬운 접근성)
Data lake는 EDW를 괴롭히는 데이터 통합과 접근성 문제를 해결합니다. Big Data Hadoop 인프라를 사용하면, 분석을 위해 보다 더 큰 데이터 볼륨을 사용할 수 있고, 나중에 사용하기 위해 아직 미확인 상태로 그 데이터를 간단히 저장할 수 있습니다. 단일 엔터프라이즈 차원의 데이터 모델에 대한 monolithic 뷰와는 달리, data lake는 실제로 데이터를 사용할 때까지 모델링을 미룰 수 있으므로 더 나은 운영 통찰력과 데이터 검색 기능을 가질 수 있습니다. 이러한 장점은 데이터 볼륨과 다양성, 메타데이터의 풍부함이 증가할수록 커집니다.
Reduced costs
(비용 절감)
규모의 경제 때문에 일부 Hadoop 사용자들은 Hadoop Cluster로 인해 테라바이트 당 1000달러 미만을 지불한다고 주장합니다. 비록 숫자는 다를 수 있지만, 비즈니스 사용자들은 모든 데이터를 저장하는데 들어가는 비용이 그렇지 비싸지 않기 때문에 나중에 분석하고 검색하기 위해서 모든 데이터 복사본을 Hadoop에 간단히 저장할 수 있음을 이해하고 있습니다.
Scalability
(확장성)
빅데이터는 일반적으로 볼륨, 다양성, 속도 사이의 교차점으로 정의됩니다. EDW는 아키텍처의 제한 사항으로 인해 특정 볼륨 이상으로 확장이 어려움은 익히 알려져 있습니다. 데이터 처리 시간이 너무 오래 걸리기 때문에 조직에서 데이터를 최대한 활용하는데 제한이 있습니다. Hadoop을 사용하면 페타바이트 크기의 Data Lake를 비용 효율적이고 상대적으로 간단히 구축할 수 있고, 원하는 규모가 무엇이건 유지할 수 있습니다.
트랙백 주소 :: http://www.yongbi.net/trackback/803
트랙백 RSS :: http://www.yongbi.net/rss/trackback/803
댓글을 달아 주세요
댓글 RSS 주소 : http://www.yongbi.net/rss/comment/805